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ABSTRACT: A resource flock of 362 F2 lambs
provided phenotypic and genotypic data to estimate
effects of callipyge ( CLPG) genotypes (NN, NC, CN,
and CC) on meat quality traits. The mutant allele is
represented as C, the normal allele(s) as N, and the
paternal allele of a genotype is given first. Lambs of
each genotype born in 1994 and 1995 were serially
slaughtered in six groups at 3-wk intervals starting at
23 wk of age. Warner-Bratzler shear force and
subjective evaluation of marbling were collected dur-
ing both years from longissimus. Calpastatin activity
was measured on longissimus from the 1994 group,
and ELISA quantification of calpastatin protein was
obtained from the 1995 group. Significant additive and
paternal polar overdominance effects on meat quality
traits were detected. This is in contrast to previous
research that detected only polar overdominance
effects on slaughter and carcass traits in this popula-
tion. The magnitude of genotypic effects on shear force
differed significantly between years; however, additive
( P < .01), paternal polar overdominance ( P < .001),
and maternal dominance ( P < .01) effects adjusted for
variation in carcass weight were detected within each
year. Shear force data adjusted to the mean slaughter

age or carcass weight indicated that the means and
variances of CN and CC genotypes were greater than
values of NC and NN. Shear force values were
greatest for CN and were intermediate for CC. The
difference in shear force (adjusted for variation in
slaughter age) between homozygous genotypes (addi-
tive effect) was supported by calpastatin activity data
with 2-df F-tests of 3.66 ( P < .05) and 11.84 ( P <
.001) at d 0 and 7 postmortem, respectively. Cor-
responding values for the paternal polar over-
dominance effects on calpastatin activity were 53.80
( P < .001) and 87.43 ( P < .001). Calpastatin ELISA
data (d 0, adjusted for slaughter age) exhibited a
paternal polar overdominance effect exclusively with a
2-df F-test of 57.63 ( P < .001). Additive and paternal
polar overdominance effects on marbling adjusted for
slaughter age had F-tests of 6.41 ( P < .01) and 93.29
( P < .001), respectively. Consequences of increased
longissimus shear force must be addressed if the
advantages of CN lambs for dressing percentage and
carcass composition are to be realized. Further
research is needed to establish whether selection
targeted at changing the background genome can
mitigate the negative effects of the C allele on meat
tenderness.
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Introduction

Knowledge of callipyge ( CLPG) phenomena has
increased rapidly since the initial reports of Jackson
and Green (1993) and Jackson et al. (1993a,b). The
CLPG locus was reported to be near the terminal

region of chromosome 18 and a unique form of
parental imprinting, polar overdominance, was
documented (Cockett et al., 1994, 1996; Freking et al.,
1998a). Lambs expressing the callipyge phenotype
were characterized by more rapid muscle accretion,
less rapid fat accretion, greater dressing percentage,
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and compact, lean carcasses relative to lambs
representing normal phenotypes (Snowder et al.,
1994; Jackson et al., 1997; Freking et al., 1998b).
However, the callipyge phenotype was also associated
with adverse effects on meat quality traits, particu-
larly tenderness of the longissimus (Koohmaraie et
al., 1995; Field et al., 1996; Shackelford et al., 1997).

Callipyge phenotypic effects on meat quality traits
were estimated in these previous studies from data
collected on heterozygous (mutant CLPG allele in-
herited from the sire) and noncarrier lambs. Each
lamb represented one of two CLPG genotypes and was
subjectively classified as expressing either the cal-
lipyge or the normal phenotype. Statistical inferences
of previously reported phenotypic effects applied to
restricted ranges of slaughter end points, and relation-
ships of meat quality traits with slaughter age or
carcass weight within phenotype were not estimated.
Evaluation of all four CLPG genotypes over wide
ranges of biological and economical slaughter end
points is needed to provide complete information to
sheep industries in the United States and abroad.
Therefore, objectives were to test models of gene
action and to estimate effects involving all four CLPG
genotypes, inferred from flanking DNA-based mar-
kers, on meat quality traits recorded throughout an
experiment of serial slaughter design.

Materials and Methods

Animal Population and Phenotypic Data

The resource population, genotypic data, statistical
approaches, and effects of CLPG genotypes on growth,
slaughter, and carcass traits were described by
Freking et al. (1998a,b). Briefly, nine Dorset rams
exhibiting the callipyge phenotype were mated to
Romanov ewes, and selected F1 rams and ewes were
inter se-mated during two breeding seasons. The
resulting F2 progeny, born in 1994 and 1995, exhibited
segregation at the CLPG locus. A total of 362 F2 ewe
and wether lambs were serially slaughtered at 23, 26,
29, 32, 35, and 38 wk of age (n ™ 30 per age group per
year) at the Roman L. Hruska U.S. Meat Animal
Research Center. Each F2 lamb was subjectively
evaluated for expression of the callipyge or normal
phenotype at 20 wk of age to ensure representation of
phenotypes within each sex and slaughter group
combination.

Following a 24-h chill, the right side of each split
carcass was separated between the 12th and 13th ribs,
and the 12th rib cross-section of the longissimus was
subjectively scored for marbling (0 = Devoid, 200 =
Traces, 400 = Small, 600 = Moderate). The right side
was subsequently used to estimate genotypic effects on
carcass composition (Freking et al., 1998b). Loin
chops were collected from the left side of each carcass
to evaluate meat quality traits. Chops (2.54 cm thick)

were vacuum-packaged, aged for 14 d at 4°C, and then
frozen at −20°C until shear force could be measured
(range 2 wk to 5 mo). Frozen chops were thawed to
5°C, broiled to an internal temperature of 40°C,
turned, and then broiled to an internal temperature of
75°C using an open-hearth electric broiler (Farber-
ware, Bronx, NY). Chops were cooled (4°C) for 24 h
before a total of six cores (1.27 cm diameter) from
three chops were obtained parallel to the muscle
fibers. Each core was sheared once with a Warner-
Bratzler shear attachment using an Instron Universal
Testing Machine (Model 1132, Instron; Canton, MA)
with a 50-kg load cell and cross head speed of 50 mm/
min. The mean shear force of the six cores was
analyzed. Equipment malfunction led to invalid meas-
urement of shear force for the 35-wk slaughter group
born in 1995 (n = 30). These data were deleted from
all subsequent analyses of shear force.

Longissimus calpastatin activity was quantified by
different methods in the 2 yr. Calpastatin is an
endogenous inhibitor of the calpain proteolytic system
that is primarily responsible for postmortem proteoly-
sis, which results in meat tenderization (see review by
Koohmaraie, 1992). Longissimus homogenates from
carcasses of 1994-born lambs were evaluated using a
heated (crude) calpastatin activity assay described by
Shackleford et al. (1994) with the modifications as
indicated by Koohmaraie et al. (1995). Longissimus
from carcasses of 1995-born lambs were analyzed for
levels of calpastatin protein using an indirect antibody
enzyme-linked immunosorbent assay (ELISA)
described by Doumit et al. (1996). This ELISA
method required less resources to obtain calpastatin
data. The coefficient of determination between cal-
pastatin ELISA and conventional enzymatic assay of
calpain inhibitory activity was .89 when measured on
prerigor lamb skeletal muscle (Doumit et al., 1996).
The current experiment included calpastatin activity
measured at d 0 and d 7 postmortem (1994) and
quantity of ELISA calpastatin protein recorded d 0
postmortem (1995).

Genotypic Probabilities

Description of genotypic data and calculation of
CLPG genotypic probabilities were presented previ-
ously (Freking et al., 1998a). Briefly, genotypic data
were collected for 25 marker loci that spanned 87.2
cM of ovine chromosome 18. Probabilities of CC, CN,
NC, and NN genotypes were calculated for each F2
lamb as a function of the recombination rate between
the two informative marker loci flanking position 86
cM. The mutant allele is represented as C, the normal
allele(s) represented as N, and the paternal allele of a
genotype given first. Probabilities of each genotype
ranged continuously between zero and one. Genotypic
probabilities summed to one within animal, creating a
dependency. For example, an individual F2 lamb had
probabilities of .0003, .9995, .0000, and .0002 for CC,
CN, NC, and NN genotypes, respectively.
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Statistical Analyses

Meat quality traits were defined on an individual
lamb basis. The statistical model for shear force and
marbling score included fixed effects of year, sex, and
sire to partially account for environmental and poly-
genic effects. Regressions on CC, CN, NC, and NN
probabilities (NN effect was set to zero to remove
dependency) and genotype-specific linear regressions
on slaughter age or carcass weight also were esti-
mated. Calpastatin traits were analyzed with a
similar model with the exception of year effects.

A single contrast involving CLPG genotypic effects
provided sums of squares (6 df) to measure variation
due to the CLPG locus. These sums of squares were
expressed as a percentage of corrected sums of squares
(percentage variation, Table 1), a conservative ap-
proach. Three orthogonal contrasts, each with 2 df,
were derived to partition variation due to CLPG
genotypic effects. Based on previous results (Freking
et al., 1998a,b), orthogonal contrasts of CC, CN, NC,
and NN effects were evaluated to test additive (1, 0, 0,
−1), maternal dominance ( −1, 0, 2, −1), and paternal
polar overdominance ( −1, 3, −1, −1) models of gene
action, respectively. Nominal, rather than genome-
wide, levels of significance were used due to prior
positioning of the CLPG locus (Freking et al., 1998a).

Inspection of the relationship between predicted
and residual values from analysis of shear force
revealed that dispersion of residuals increased with
greater values of shear force suggesting a non-normal
distribution. A similar phenomenon was observed with
shear force data from a bovine Bos indicus × Bos
taurus resource population (Keele et al., 1999).
Furthermore, analysis of shear force on the observed
scale caused a spurious shift in the most likely
position of CLPG (data not tabulated). Following
logarithmic transformation, residual values seemed to
be normally distributed, and CLPG was positioned
consistent with other traits. Thus, shear force was
transformed by natural logarithm prior to analyses to
account for the proportional relationship between
standard deviations and means of CLPG genotypes.

A significant interaction of year and CLPG geno-
typic effects (full model) was detected for shear force.
An F-test with 6 numerator and 308 denominator
degrees of freedom was derived from the difference in
residual sums of squares between full and reduced
models (F = 5.29; P < .01). This significant interaction
was due exclusively to differences in the means of the
CN genotype; the means of the remaining three CLPG
genotypes were consistent between years. Therefore,
final analysis of shear force (log transformed) was
conducted separately for each year.

Relationships of meat quality traits with slaughter
age or carcass weight for each CLPG genotype were
estimated by linear regression equations. Covariate
values were coded as deviations from the mean of the
covariate. Thus, intercept values represent means of

CLPG genotypes at the mean of the covariate.
Regression equations for slaughter age have inference
from 161 to 266 d and are in the context of a Dorset
and Romanov genetic background. Predicted values of
carcass weight at intended ages of 161 and 266 d
represent the range of inference for carcass weight.
Predicted carcass weight ranged from 20.2 to 29.4 kg
for normal (CC, NC, and NN) and from 22.4 to 31.4
kg for callipyge (CN) phenotypes (genotypes).

Results and Discussion

Genotype × Year Interaction

Similar ranking of genotypes between years
provided consistent results concerning gene action
(Table 1). However, a significant difference between
years in the CN mean was observed for Warner-
Bratzler shear force, but means of the remaining three
genotypes were consistent between years (Tables 2
and 3). Inspection of the genotypic means from the
three sires used both years indicated this phenomenon
was consistent within sires. In this case, the joint
effects of genotype and year (environment) were not
predictable from their separate average effects (Dick-
erson, 1962). Lambs and carcasses were treated
similarly each year to the extent possible. Shear force
means of slaughter groups were similar within year,
indicating that the environmental effect was not
associated with a specific slaughter group. In contrast,
under less controlled commercial slaughter conditions,
Keele et al. (1999) reported significant genotype ×
slaughter group interactions for shear force in a
bovine resource population. The interaction from the
current experiment was the result of an undetermined
environmental effect(s) that specifically impacted
shear force of the CN genotype. We can offer no
explanation for the nature of this effect. Such an
interaction was not detected for any trait previously
analyzed in this population. Measures of calpastatin
activity were confounded with year and could not be
tested for this interaction. Due to the interaction,
genotypic effects on shear force are presented
separately for each year.

Gene Action of the Callipyge Locus
for Meat Quality Traits

Previous analyses indicated that additive and
maternal dominance genetic effects of the CLPG locus
did not contribute significantly to variation of growth,
slaughter, and carcass traits (Freking et al., 1998a,b).
These contrasts are orthogonal to the paternal polar
overdominance contrast. To evaluate the hypothesis
that meat quality traits displayed similar gene action,
CLPG genotypic effects on shear force, marbling score,
and calpastatin traits were tested using these same
three orthogonal contrasts.
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Table 1. Number of observations, F-tests for additive, maternal dominance, and paternal polar
overdominance gene action, and variation accounted for by genotypesa

aF-tests (2 df) associated with additive, maternal dominance, and paternal polar overdominance contrasts of regressions on genotypic
probabilities and genotype-specific covariates (slaughter age or carcass weight).

bVariation due to CLPG locus as a percentage of corrected sum of squares.
*P < .05.
**P < .01.
***P < .001.

F-test

Number of Maternal Paternal polar Percentage
Dependent variable observations Covariate Additive dominance overdominance variationb

Warner-Bratzler shear force
Year 1994 189 Slaughter age 17.40*** 2.50 43.68*** 44.64

Carcass weight 18.11*** 3.43* 38.47*** 42.82
Year 1995 143 Slaughter age 6.60** 2.45 76.91*** 50.18

Carcass weight 6.97** 6.19** 73.21*** 53.19
Calpastatin activity (1994) 189
Day 0 Slaughter age 3.66* 3.85* 53.80*** 41.87

Carcass weight 3.32* 1.81 58.00*** 44.13
Day 7 Slaughter age 11.84*** 2.54 87.43*** 56.11

Carcass weight 10.94*** 2.34 84.01*** 55.15
ELISA calpastatin (1995)
Day 0 170 Slaughter age 1.36 1.12 57.63*** 39.51

Carcass weight 1.77 .49 58.55*** 40.69
Marbling score 362 Slaughter age 6.41** .23 93.29*** 35.84

Carcass weight 6.76** .10 111.85*** 41.71

Table 2. Genotype-specific regression coefficients on slaughter agea

aCovariate values are deviations from the mean value of 214.9 d. Thus, intercept values are means of genotypes at the mean slaughter age.
bO.D. = optical density.
c0 = Devoid, 200 = Traces, 300 = Slight; 400 = Small; 500 = Modest.
*P < .05.
**P < .01.
***P < .001.

Warner-Bratzler shear Calpastatin activity (1994), ELISA calpastatin

Marbling
scorec

force, kg loge U/g muscle (1995), O.D. (450 nm)b

Item 1994 1995 Day 0 Day 7 Day 0

NN genotype
Intercept 1.19116 1.21119 3.22850 2.19145 .66001 406.31
Linear −.00029 −.00263* −.00672 .00155 −.00112 1.38***

NC genotype
Intercept 1.24107 1.19412 4.00175 3.20126 .77855 371.13
Linear −.00014 −.00550*** −.01904*** −.00307 −.00244** 1.34***

CC genotype
Intercept 1.55334 1.54300 3.76647 3.23987 .75115 352.52
Linear −.00217 −.00566 −.01269* −.00488 −.00290 1.39***

CN genotype
Intercept 1.74211 2.14657 5.29691 4.96084 1.21765 243.80
Linear −.00037 −.00245 −.00886* −.00396 −.00397*** .38

RSD .26312 .29329 .93778 .93624 .21258 77.92

Numbers of observations for each trait, tests of
models of gene action, and the percentage of variation
accounted for by genotypic effects are presented in
Table 1. Results are presented from analyses fitting
either slaughter age or carcass weight as covariates.
The 6 df associated with genotypic effects were

partitioned into the three orthogonal models of gene
action (2 df each) described above.

All traits exhibited effects of paternal polar over-
dominance, ranging from an F value of 38.47 for 1994
shear force data adjusted for carcass weight ( P <
.001) to an F value of 111.85 for marbling score
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Table 3. Genotype-specific regression coefficients on carcass weighta

aCovariate values are deviations from the mean value of 25.63 kg. Thus, intercept values are means of genotypes at the mean carcass
weight.

bO.D. = optical density.
c0 = Devoid; 200 = Traces; 300 = Slight; 400 = Small; 500 = Modest.
*P < .05.
**P < .01.
***P < .001.

Warner-Bratzler shear Calpastatin activity (1994), ELISA calpastatin
force, kg loge U/g muscle (1995), O.D. (450 nm)b

Marbling
scorecItem 1994 1995 Day 0 Day 7 Day 0

NN genotype
Intercept 1.19934 1.23687 3.15653 2.15944 .67187 406.35
Linear .00497 −.02103** −.07145* −.01481 −.01054 11.02***

NC genotype
Intercept 1.25939 1.18431 3.63417 3.14626 .77761 383.75
Linear .01283 −.05020*** −.15382** −.02406 −.01520* 12.90***

CC genotype
Intercept 1.55693 1.62368 3.57915 3.20832 .79076 354.21
Linear −.00781 .00456 −.13177* −.03320 −.02555 12.68***

CN genotype
Intercept 1.74035 2.17479 5.27341 4.95250 1.26322 239.24
Linear .01414 −.00971 .00071 −.01280 −.02149*** 1.73

RSD .26170 .29818 .96658 .94094 .21772 77.23

Figure 1. Derived genotype-specific distributions for
Warner-Bratzler shear force of longissimus at 14 d
postmortem in 1994 and 1995.

adjusted for carcass weight ( P < .001). With the
exception of ELISA calpastatin, all traits exhibited
significant additive effects ( P < .05). Maternal
dominance effects also were detected for shear force
(carcass weight as covariate; P < .05, 1994; P < .01,
1995) and calpastatin activity on d 0 (slaughter age
as covariate; P < .05, 1994).

Results established that paternal polar over-
dominance accounted for CLPG genotypic effects on
ELISA calpastatin, but failed to uniquely describe
genotypic effects on shear force, calpastatin enzymatic
activity, and marbling. These latter traits were more
complexly regulated at the CLPG locus because three
genotypic distributions were necessary to describe
variation (see Figure 1 as an example). Furthermore,
gene action was not consistent among meat quality
traits as described below. These conclusions are in
contrast with the paternal polar overdominance model
of CLPG genotypic effects used to describe inheritance
of the callipyge phenotype and measures of carcass
shape or composition (Cockett et al., 1996; Freking et
al., 1998a,b). Investigating the novel interaction of
genotypes and phenotypes associated with this locus
may offer opportunities to improve understanding of
the complex relationships involving muscle growth
and meat quality traits. Future research should
consider use of orthogonal contrasts of genotypic
effects to evaluate these unique forms of gene action.

Warner-Bratzler Shear Force Distribution

Distributions generated from the probability den-
sity function assuming a log normal model of shear
force values were transformed back to the observed

scale and are presented for each genotype by year
(Figure 1). The mean and SD were largest for CN
followed by CC, which was intermediate relative to
NC and NN. Means in kilograms on the log normal
scale for each genotype at the average slaughter age or
carcass weight are presented as intercept values in
Tables 2 and 3, respectively. Adjusted to an age-
constant basis, the SD values in 1994 on the observed
scale were .91, .96, 1.31, and 1.58 kg for NN, NC, CC,
and CN, respectively. Corresponding SD in 1995 were
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1.05, 1.03, 1.46, and 2.68 kg. The variance of shear
force for CN was 2.9 times larger in 1995 than in
1994. Genotypic means and SD for shear force
adjusted to a mean carcass weight were virtually
identical to the age-constant values.

In the current study, a larger portion of the CN
distribution was overlapping with distributions of NN
and NC in 1994 than in 1995, where the overlap was
slight. The CC distribution is intermediate and
overlaps with all other distributions. The CN variabil-
ity reveals a problem with product uniformity, but
also allows for potential improvement through selec-
tion if part of this variation is genetic in nature.
Important environmental effects, as yet unknown,
would need to be addressed by antemortem treatment
of lambs and by postmortem treatment of carcasses.

Genotypic Effects and Relationships
with Slaughter Age and Carcass Weight

Coefficients for linear regression equations on days
of age at slaughter and carcass weight are presented
in Tables 2 and 3, respectively. Due to the complexity
of gene action, all four genotype-specific relationships
are given for each meat quality trait. Shear force
decreased slightly as slaughter age increased for each
genotype. Effects of carcass weight on shear force also
were small but less consistent in sign. Linear regres-
sion coefficients on age and carcass weight for NN and
NC genotypes in 1995 were the only significant
relationships with shear force. Some research prior to
callipyge experiments also had indicated a general
trend of decreased shear force in lamb as age or
carcass weight increased within the typical marketing
range (Kemp et al., 1976; 1980).

Large differences existed between genotypes in the
force necessary to shear core samples from broiled
longissimus chops aged 14 d. The CN genotype
exhibited the greatest mean for shear force in both
years. Transformed back to the observed scale, the
age-adjusted CN mean exceeded the NN mean by 2.4
kg in 1994. In 1995, the magnitude of the difference
was greater (5.2 kg). These results are in general
agreement with Koohmaraie et al. (1995), who
reported large unfavorable effects (4.9 kg higher) of
CN compared to NN on longissimus shear force
through 21 d of postmortem storage. This increased
shear force is apparently primarily associated with the
strength of the myofibrillar fraction of muscle rather
than changes in connective tissue. Field et al. (1996)
reported that collagen percentage and degree of
maturation of the collagen crosslinks were lower in
callipyge than normal phenotype lambs, thus failing to
explain the increased shear force in callipyge lambs.

Carpenter et al. (1996) identified a shift toward
larger fast-twitch glycolytic fibers of muscles that
displayed hypertrophy in callipyge lambs. Koohmaraie
et al. (1995) reported a shift toward the same (alpha-

white) fibers that increased the overall average fiber
area in affected muscles from callipyge lambs. Ex-
perimental data from rats indicated that muscles that
had a larger functional area composed of fast-twitch
fibers had lower protein turnover (Garlick et al.,
1989). Research conducted by Lorenzen et al. (1997)
indicated a decrease in fractional rates of protein
synthesis and protein degradation in hypertrophied
skeletal muscles of callipyge lambs at 8 wk of age.
Bovine muscles, with larger average fiber size, tended
to have greater calpastatin activity and shear force
(Koohmaraie et al., 1988). This information might
suggest that increased average fiber area associated
with a shift in fiber type distribution is correlated
with lower protein turnover and higher levels of
calpastatin activity antemortem and postmortem,
resulting in a detrimental effect on shear force. No
information has been reported on the fiber type
distribution of muscles from CC and NC lambs, which
do not express the hypertrophy phenotype. As indi-
cated by the significant additive effect, CC also had
greater values (1.43 kg in 1994 and 1.32 kg in 1995)
of shear force relative to NN, but was intermediate
compared to CN. Significant maternal dominance
effects indicated that NC was different from the mean
of the two homozygotes when carcass weight was
fitted as a covariate. In this case, NC was similar to
NN for shear force.

The greater longissimus shear force of CN and CC
relative to NN is supported by data collected on
quantity and activity of calpastatin. Calpain-mediated
postmortem tenderization of longissimus fibers via
proteolysis would be inhibited by increased calpasta-
tin activity. Previous research had shown no
detrimental effect of the callipyge phenotype on either
m- or m-calpain enzyme activity at death (Koohmaraie
et al., 1995). Levels of calpastatin activity at d 0 and 7
postmortem were greatest for CN at all ages (Table
2). The difference between CN and NN for calpastatin
activity at d 7 postmortem (2.8 U/g muscle) is slightly
larger than the difference (1.9 U/g muscle) reported
by Koohmaraie et al. (1995). Measurements of
calpastatin activity of NC and CC were lower than
CN, but higher than NN. Similar to shear force,
calpastatin showed a slight general trend of decreased
activity as slaughter age increased from 161 d to 266 d
and as carcass weight increased (Tables 2 and 3). In
contrast to shear force data, however, calpastatin
activity of NC was similar to CC, rather than NN.
Genotypic effects on shear force are not entirely
consistent with the magnitude of the effects on
calpastatin activity (Figure 2).

The relationship between shear force and calpasta-
tin was characterized by a different measurement in
yr 2 of the experiment. Levels of a 130 kDa skeletal
muscle calpastatin protein were quantified in the
1995-born lambs with an indirect antibody ELISA
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Figure 2. Genotype-specific relationships with slaugh-
ter age for Warner-Bratzler shear force (14 d postmor-
tem) and calpastatin activity (7 d postmortem) of
longissimus.

(Doumit et al., 1996). Calpastatin protein levels of
longissimus were substantially higher in CN at d 0
postmortem (Tables 2 and 3). Small, but consistently
negative trends were observed for ELISA calpastatin
as slaughter age and carcass weight increased. Levels
of calpastatin protein measured by ELISA for CC and
NC were numerically intermediate to CN and NN, but
not statistically different from NN. As with 1994 data,
genotypic effects on ELISA calpastatin are not consis-
tent with effects on shear force.

The significant difference between CLPG homozy-
gous genotypes for shear force warrants further
investigation into the biological basis of why shear
force differences were detected without associated
differences in muscle hypertrophy. It would be infor-
mative to examine the variability between the four
CLPG genotypes in prerigor tenderness (Wheeler and
Koohmaraie, 1994) to determine whether effects on
shear force can be explained to some extent before the
delayed postmortem proteolysis. This research indi-
cates the potential complexity of traits that may

contribute to genetic and nongenetic differences in
meat tenderness.

Amount of intramuscular fat evaluated by subjec-
tive assignment of marbling score was lowest in CN.
Typical increases at later ages for this fat depot were
not apparent for CN lambs because the difference
between genotypic groups became greater over time.
This trend is clearly represented by the differences
among genotypes in linear regression coefficients on
slaughter age (Table 2). The mean value for marbling
score in CN lambs did not exceed the “Slight” category
(300 = Slight 00) at any age. In comparison, the other
genotypes increased from the “Slight” category at the
initial slaughter groups to the “Small” category (400 =
Small 00) at the last slaughter group. Deposition of
intramuscular fat in CN was substantially delayed,
consistent with reported decreased deposition of car-
cass fat. Previous studies also reported significant
reductions in marbling of longissimus of callipyge
phenotype lambs (Koohmaraie et al., 1995; Jackson et
al., 1997). Intramuscular fat has been shown to have
a small, positive effect on shear force, flavor, and
juiciness of beef longissimus (Wheeler et al., 1994),
and it could have a small effect on tenderness, flavor,
and juiciness of lamb chops.

Improving Tenderness of Callipyge Lamb

Several postmortem treatment technologies have
been evaluated to reduce the detrimental effect of CN
on longissimus tenderness (Solomon et al., 1995;
Duckett et al., 1998; Koohmaraie et al., 1998). These
treatments can reduce the antagonism with tender-
ness, but are costly, and not readily implemented with
a traditional fresh-lamb market system. An alterna-
tive approach, which has not been investigated, would
involve long-term selection for tenderness within
terminal sire populations fixed for the C allele.
Progeny testing a large number of CC sires may
identify individuals that consistently produce CN
offspring with values on the lower portion of the shear
force distribution. The current study is not designed to
estimate genetic (co)variances. However, indication of
genetic variance for shear force within CLPG geno-
types would be of value. The effect of sires (of the F2
generation) was treated as a fixed effect in the current
analysis; it was a significant source of shear force
variation in 1995, but it was not significant in 1994
(slaughter age as a covariate). After accounting for
effects of year, sex, sires, CLPG genotypes, and
slaughter age, the residual phenotypic correlation of
lean accretion rate (fat-free lean adjusted to a
constant age) with shear force was .18 ( P < .001). The
genetic (co)variances of this antagonistic phenotypic
correlation need to be estimated to evaluate the
potential impact of selection for improved tenderness.

Differences between Dorset and Romanov breed-
specific alleles at independently segregating loci can
be investigated in this population. Discovery of such
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loci would allow selection efforts to reduce the
antagonism with shear force. Genetic maps to draw
direct comparisons between the bovine and ovine
genomes have evolved dramatically in recent years
(Kappes et al., 1997; de Gortari et al., 1998). Genomic
regions affecting tenderness are being identified in
bovine populations (Keele et al., 1999). Investigation
of allelic variation at the homologous regions of the
ovine genome would seem to be logical targets for
study. It is reasonable that a genome scan within this
experimental population could identify regions of the
genome that modify the impact of CLPG on tender-
ness. The heritability of shear force has been esti-
mated as .3 to .5 in beef cattle (Koch et al., 1982;
Shackelford et al., 1994). This moderate heritability
and identification of putative loci from genome scans
targeting meat tenderness would suggest that there
are several loci potentially contributing to the genetic
regulation of meat tenderness in bovids that may be
exploited by selection.

Implications

Increased shear force values from longissimus must
be addressed if the advantages of callipyge lambs for
lean growth rate, muscle shape, and carcass composi-
tion are to be realized. Unique forms of gene action
were detected for various meat quality traits; these
findings contrast previous research that described the
association of genotypes with the callipyge pheno-
types. Greater means and variances for shear force
were associated with CC and CN genotypes. This large
variation may provide an opportunity for long-term
selection schemes to improve tenderness. Identifica-
tion of the genetic and biochemical pathways by which
the CLPG locus is influencing accretion of muscle
protein and chemical fat, as well as altering longissi-
mus shear force, would provide valuable knowledge to
improve understanding of muscle biology and meat
tenderness irrespective of species.
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